Training guidelines for advanced Bronchoscopic procedures
Endorsed Version: February 2012

Contributing TSANZ Interventional Pulmonology SIG Members:
- Dr David Fielding Brisbane
- Dr Martin Phillips Perth
- Dr Peter Robinson Adelaide
- Dr Lou Irving Melbourne
- Dr Luke Garske Brisbane
- Dr Peter Hopkins Brisbane

 Abbreviations
EBUS Endobronchial ultrasound
TBNA Transbronchial needle aspiration

Summary
These guidelines for Thoracic Medicine advanced procedural training encourage fulfilment of a range of parameters, not just accumulating an empiric number of cases. These include:

- Empiric numbers as a starting point.
- The importance of a teacher-student relationship. The trainee has to achieve competence in the procedure as certified by an accredited trainer. As a guide it usually takes about 20 cases to have achieved the appropriate skill level, however that can vary as judged by the expert trainer.
- Attainment of modest procedural outcome measures during training and in ongoing clinical practice.
- Attendance at dedicated procedural conferences and fulfilment of modest presentation and/or publication goals.
- Completion of simulated training, preferably before commencing procedures in patients.
- Ultimately, when it becomes available, a “pass” on a universally accepted objective assessment tool. In the absence of this last parameter, we can at least insist that trainees undertake simulated training, and that such training itself has an objective assessment. In time such an assessment could become either a goal prior to commencing patient practice OR, when such tools are more fully developed, a means of evaluating the individual’s overall technical skill in the procedure.
- Record keeping on procedural outcomes.

The procedures covered in these guidelines are:
- EBUS TBNA
- EBUS Guide sheath
- Medical Thoracoscopy
- Rigid bronchoscopy
- Laser bronchoscopy
- Endobronchial stents
- Endobronchial electrosurgery
- Autofluorescence bronchoscopy
Ultimately a demonstration of adherence to these points should allow a trainee to present their training experience for a particular procedure to a hospital credentialing committee to allow commencement of practice.

Preamble to training guidelines in advanced Bronchoscopic procedures

We encourage Thoracic trainees and physicians to learn these advanced procedures. Some will be able to learn a range of techniques but most will select one or two which extend their skills from basic bronchoscopy. Which procedure(s) you set out to learn often depends on what you are comfortable with. A number of the procedures simply build on skills you already know (transbronchial lung biopsy and TBNA for EBUS, chest tube placement for Thoracoscopy), whereas others require a quite different and new set of skills and take you more out of your comfort zone (rigid bronchoscopy). In general we recommend focusing on 1 or perhaps 2 of the advanced procedures, rather than expecting to learn all of the procedures during advanced training.

Recent US Interventional Pulmonology guidelines suggest procedure training either occur during conventional training or, where additional skills are required, within an additional year dedicated to procedures (Lamb et al). “Training in these advanced procedures should only be pursued if there is a realistic expectation that the trainee will achieve sufficient proficiency in the given procedures to perform them without supervision at the completion of training and maintain the skill set thereafter. Brief exposures to these advanced procedures during most standard pulmonary and critical care fellowship programs or training courses are not adequate to achieve competency.” Similarly, The American Society for Gastrointestinal Endoscopy states “more complex diagnostic and therapeutic procedures are used less frequently than standardized procedures . . . [and] their successful performance requires fewer endoscopists with more skill and experience gathered during a longer training period . . . often for one year after a standard fellowship” (Eisen et al). They also state that “not all trainees should pursue such advanced training nor should all programs offer advanced training . . . such training should be concentrated in those programs that have a combination of both patient volume and faculty expertise.”

Therefore, it is important for trainees to identify a need for a particular procedure at their current or intended hospital. A steady flow of referrals for a particular procedure is needed to maintain skills. If one is working in a major city hospital there might be a relatively constant number of rigid bronchoscopy cases whereas in a provincial centre only one or two such cases might be seen in a year, and referrals to a major centre would be the sensible option. Conversely some procedures which seem invasive at first (medical thoracoscopy) can be done effectively and safely in a provincial centre, as there is always a steady stream of pleural problems and skills can be easily kept up. In major cities, for example, there ought to be at least two proceduralists offering rigid/laser/stent services because it is unsatisfactory for no service to be available if the only skilled proceduralist is on leave.

The nature of training: procedure numbers versus simulated training

In an editorial, Ost et al summarise the problem of the best framework of procedure training: “The assumption is that the more a physician performs a procedure, the better he or she will be. However, precise data describing the learning curve for procedures are difficult to obtain. In addition, there is significant variability in terms of the rate of skill acquisition, so what constitutes sufficient volume to learn a skill may vary widely between individuals. Even if data on learning curves were available, where to set the volume thresholds for certification would always be a difficult question given this variability. Should it be toward the top of the distribution, such that 95% of all graduates will have adequate experience? Should it be the median? No matter where we set volume thresholds, the answer will be wrong. Set it too high, and many will be excluded, with the result being slow dissemination of otherwise useful technologies and missed opportunities. Set it too low, and complications and inappropriate utilisation patterns will develop. A simpler solution is to measure and monitor outcomes and performance quality directly and to provide feedback to physicians rather
than relying solely on expert opinion, volume requirements, or other surrogate markers. Such a system could be combined with volume requirements and other didactic instruments. One of the greatest challenges in the field, however, is that the necessary procedural quality benchmarks for such a system do not exist.”

Accordingly, these TSANZ guidelines use both previous published numbers as well as procedural outcomes the authors considered modest on the basis of their experience. Knowing more about outcomes of these procedures, we should now start to look for those outcomes from the start of training. If outcomes are being met, training and ongoing practice must be going well. Numbers help but expected outcomes are better as quality control for trainees. The proposed outcomes are modest in their expectation, not set at expert level. The guidelines suggest internal audit parameters based on lung function improvement, comparative comfort questionnaires, and so on.

Simulated training

Unroe *et al* recently demonstrated clear improvement in bronchoscopic skill with early use of virtual reality simulators in a 2-year prospective multi-center evaluation of educational interventions to assist first-year pulmonary fellows in acquisition of bronchoscopy skills. The group utilising virtual reality simulator acquired bronchoscopy skills significantly faster than the control group. This was most pronounced in the first 30 bronchoscopies. They considered “the success of this type of comprehensive curriculum for bronchoscopy training lays the groundwork for training in advanced bronchoscopic techniques, such as EBUS TBNA”. Recently, both low and high fidelity EBUS TBNA simulators have been evaluated for their training benefits, and offer realistic tactile feeling of how the scope and needle operate. “This cascaded approach to education shapes “deliberate practice pedagogy. Joined with a mastery-learning program structure, the combination creates the potential for a more standard way to assess knowledge and competence.” As Unroe states: “An ideal curriculum would include pre-procedure training on low or high fidelity simulators, as available, combined with a computer based CT and ultrasound image interpretation. By then, the learners would be prepared to perform EBUS- TBNA on live patients under close supervision from experienced faculty.”

In an ACCP review of the benefits of simulated practice, McGagie *et al* comment: “Deliberate practice is an educational variable associated with delivery of strong and consistent educational treatments as part of the mastery learning model. Although demanding of learners, deliberate practice is grounded in information processing and behavioral theories of skill acquisition and maintenance. It has at least nine requirements that can inform CME, as follows:

1. Highly motivated learners with good concentration;
2. Engagement with a well-defined learning objective or task;
3. Appropriate level of difficulty;
4. Focused, repetitive practice;
5. Rigorous, precise measurements;
6. Informative feedback from educational sources (eg, simulators or teachers);
7. Monitoring, correction of errors, and more deliberate practice;
8. Evaluation to reach a mastery standard; and
9. Advancement to another task or unit.

As stipulated below, attendance at training courses is therefore recommended as part of training in the particular procedure. Such courses should be predominantly simulated practice and preferably have an assessment at the end of the course with a view to specific skill feedback to course participants. Such post course assessments have been developed by Colt *et al* for standard bronchoscopy (Bronchus-STAT), EBUS TBNA (EBUS STAT) and medical thoracoscopy. Colt’s work at UC Irvine (see Bronchoscopy.org) is ongoing in evaluating subsequent clinical performance after post course testing. Kemp *et al* have published another putative method for objective assessment of EBUS
TBNA skill known as cusum analysis. They showed clear difference in speeds at which people learn new tasks, even studying operators highly experienced in similar procedural techniques. They state “With the ever-expanding number and complexity of bronchoscopic procedures (and of medical procedures in general), there is a need to formulate adequate assessment tools for trainee development, and we propose cusum analysis as one such tool.”

Papers by Stather and Salud have also explored this issue. In Stather’s study, two cohorts of trainees were each evaluated while performing EBUS-TBNA on two patients. Group 1 received training by performing 15 cases on an EBUS-TBNA simulator ($n = 4$) and had never performed a clinical EBUS-TBNA procedure. Group 2 received training by doing 15–25 EBUS-TBNA procedures on patients ($n = 4$). There was no significant difference in the primary outcome measure of procedure time or number of successful aspirates between the groups. Indeed the percentage of positive aspirates was very high and acceptable on clinical grounds viz 93% and 86% for groups 1 and 2, and supports the number of 20 observed cases as an empiric number for training. It remains to be seen whether doing simulated training as well as the observed 20 clinical cases gives better outcomes than either intervention alone, but at the very least doing the simulated training first starts trainees off at a good standard.

The teacher

These guidelines are not meant to replace the relationship between a teacher (senior clinician) and student (senior registrar) which often is the best means to ensure adequacy of training, and has been the time-honoured method in virtually every learned society. Some teachers may feel one student grasps the procedures quickly whereas another student, having completed the “necessary number” of cases, clearly needs more instruction and supervision. The teacher student relationship needs to be open so that if there is suboptimal progress the reasons can be discussed during the training period.

Accreditation

The process of accreditation for a procedure is complex. In many respects accreditation actually means satisfying the hospital committee that the necessary credentials to do the procedure under their roof are met. Basically it means fellows have to be safe, willing to document and present their outcomes. Hospital Accreditation committees quite rightly expect data on side effects, morbidity and mortality. Therefore a focus of these TSANZ guidelines is to start a process of keeping a log book which can be used when presenting to your hospital committee. They suggest outcomes of prospectively collected symptom/comfort scores for the different procedures, accomplishment of reasonable standards of diagnostic accuracy compared to international figures.

Training case numbers

Even though starting training is probably best done with simulated practice, case experience will of course still be essential. At first glance, 20 cases of any procedure seems a lot. The first suggestion is to apply to train at hospitals where the procedure of interest is regularly done. Secondly, visits to hospitals either in Australia or overseas for periods of up to a month or more either during or following advanced training could further case experience or exposure. Many senior clinicians will let fellows at least partially assist them in cases, but even if this is not possible simply observing the process and documenting cases for an intensive focused period will often satisfy a hospital accreditation committee. Creating a log book is essential, by documenting all the cases observed or assisted at with still pictures and video as well as basic history. Thirdly, hands-on training at accredited courses is essential and is a part of recommended training in these guidelines. Note consultants teaching fellows these techniques would count the same procedure as the fellow for the purposes of the ongoing tally of their cases.
We have included prerequisite techniques for each procedure. Trainees have to be able to “walk before they can run”. Trainees should focus on getting all the basics right before starting the more advanced method. The right time to start learning the new procedures will vary greatly – and should be mutually agreed with the supervisor.

Summary of previously published recommended numbers

Note, as per the original publications: “Number achievement alone does not establish competency.” And, “Mastery of these skill sets is an ongoing process in practice, extending beyond the IP fellowship.” (Endoluminal therapies may be combined to achieve the recommended number.)

<table>
<thead>
<tr>
<th>Procedure</th>
<th>ACCP</th>
<th>ERS/ ATS</th>
<th>BTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rigid Bronchoscopy</td>
<td>20</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Autofluorescence bronchoscopy</td>
<td>20</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>EBUS TBNA</td>
<td>50 (Radial probe)</td>
<td>40(Linear “convex” and radial probe combined)</td>
<td></td>
</tr>
<tr>
<td>Laser</td>
<td>15</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Diathermy/APC</td>
<td>15</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Cryotherapy</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brachytherapy</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stents</td>
<td>20</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Balloon tracheobronchoplasty</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medical Thoracoscopy</td>
<td>20</td>
<td></td>
<td>Levels of competence defined see text</td>
</tr>
</tbody>
</table>

References:

Ost D, Eapen G, Jimenez C, Rodolfo C. Improving procedural training and certification in Pulmonary medicine. Chest 2010;137;6-8

McGaghie W, Siddall V, Mazmanian P et al. Lessons for Continuing Medical Education From Simulation Research in Undergraduate Medical and Graduate Medical Education : Effectiveness of Continuing Medical and Graduate Medical Education :: American College of Chest Physicians Evidence-Based Educational Guidelines. Chest. 2009;135:625-68S

Colt HG, Davoudi M, Murgu S, Zamanian Rohani N. Measuring learning gain during a one-day
introductory bronchoscopy course. Surg Endosc. 2011;25:207-16

Expected Ongoing Interventional Pulmonology activities for trainees and Physicians

In a 2 year cycle:
- Attend one hands on training course (preferably with simulated training either low or high fidelity with assessment), preferably before commencement of training in the procedure
- Attend one dedicated Interventional Pulmonology meeting
- Attend one Interventional Pulmonology SIG
- Present or co-present an abstract or publish an article on some aspect of Interventional Pulmonology at State/National or International level
- Read the Journal of Bronchology

Web resources
- Essential Bronchoscopist http://www.bronchoscopy.org/education/BiEducEB_.asp
- Interventional Pulmonology website at TSANZ members only page
- “Insertion of chest tunes and management of chest drains in adults”.

Texts
- Kitamura S. Colour atlas of Clinical application of fiberoptic bronchoscopy. Tokyo Wolfe publishing Ltd. 1990

EBUS TBNA

Introduction
Introduced in 2003 this method of sampling mediastinal and hilar lymph nodes has rapidly gained popularity and wide use because of a strong safety profile and high diagnostic yield. It is useful not only for staging of known carcinoma but for allowing the original tissue diagnosis in patients with lung masses. A dedicated bronchoscope is used which incorporates an ultrasound tip for real time imaging of nodes adjacent the bronchial/tracheal wall. It also utilises a dedicated TBNA needle with dedicated biopsy channel. This needle is passed into the node in question and can be visualized in real time as samples are taken. Seven well-described anatomical sites can be sampled as defined for standard TBNA. This method therefore builds on the previous technique of “blind” TBNA which has been shown as safe for over 20 years. A number of aspects of blind TBNA have meant that despite its
safety the technique has always been under-utilised. Design aspects of the scope improve the ability of the TBNA needle to enter the lymph node through the bronchial wall. Studies comparing to “blind” TBNA show real time ultrasound imaging improves results particularly where the node is small and in less commonly biopsied sites. Even in more commonly biopsied sites such as the subcarinal region it improves the confidence of the operator to know the needle position at all times. Mediastinal staging is critical to many lung cancer patients; combining EBUS TBNA for anterior, subcarinal and hilar nodes with EUS FNA of low posterior and subcarinal nodes means that very few patients now need a mediastinoscopy, and as such EBUS TBNA is now part of the basic staging mechanism for lung cancer.

Typical sensitivity for malignancy in a large number of studies is 90-95%. Accuracy of convex probe TBNA in lung cancer staging is exceptionally high and in controlled studies exceeds that for PET scan and CT. The method has been shown in numerous studies to be an effective and simple way of obtaining tissue in the histological diagnosis of sarcoidosis with yields in patients with suspicious radiology of over 85%. It thereby reduces the need for transbronchial lung biopsy and indeed has been shown when used in combination with TBLBx to significantly improve the yield.

Indications
- Diagnosis of mediastinal/hilar nodes in patients with lung masses either as the first means of making a tissue diagnosis or as staging of a known cancer.
- Diagnosis of other isolated mediastinal masses
- Confirmation of sarcoidosis in patients with bilateral mediastinal/hilar nodes; either as a sole method or in combination with transbronchial lung biopsy.

Requisite prior experience
100 flexible bronchoscopies with demonstrated competence
5 standard TBNAs

Number of cases in training 20

Requisite knowledge prior to training
- Understand node positions as described by KP Wang for standard TBNA as well as Nodal maps as per ATS/ Naruke.
- Key anatomical relations at each of the 7 commonly biopsied sites

Internal Audit Goals
- Print out and label major anatomical relations adjacent to lymph node biopsy sites in all cases – log book.
- Balloon and needle set up in all cases
- Ability to pass scope through vocal cords in >90%
- Ability to image lymph node in question in >90% of cases
- Ability to pass TBNA needle through wall of trachea/bronchus into node in >80%
- Sensitivity for carcinoma in >75%
- Typical procedure time 30-40 minutes.

Safety Goals in ongoing cases: Major Bleeding < 1%, pneumothorax <1%, infection <1%. Trainees should not have more than one of any of these complications.

Ongoing numbers 20 per year

References
EBUS GUIDE SHEATH/MINIPROBE

Introduction
EBUS miniprobe is a tool that allows directed sampling of localised lesions beyond the view of the bronchoscope. It is used in conjunction with detailed interpretation of (reconstructed) CT scans and usually fluoroscopy during the procedure. Therefore it is an improved way of doing transbronchial lung biopsy of a peripheral lesion. Many bronchoscopy units do procedures for such lesions and common yields are around 20% where only a bronchial washing is done. This can go up to around 40% where XRay fluoroscopy is used. Comparative studies have shown the improved diagnostic yield of adding EBUS miniprobe compared to just doing fluoroscopy alone. The miniprobe can be used to sample lesions in distal bronchi, bronchioles and alveoli. Lesions which are angiocentric such as metastases tend to have a lower yield. The sensitivity for primary malignancy is >70%. Some parts of the lung are less easy to access with any form of transbronchial lung biopsy and this is true for EBUS miniprobe in the left upper lobe. A wide range of localised infective and inflammatory lesions can also be sampled using miniprobe EBUS.

The techniques for miniprobe EBUS are the same as those currently used for sampling peripheral lesions with fluoroscopy. There are 2 additional aspects to training for this technique -these are firstly the use of the plastic guidesheath through which the miniprobe is passed. This is described in detail by Kurimoto and others. It is a simple matter of learning to fit the plastic sheath to the miniprobe before the procedure; once the probe has entered the lesion the probe is removed while the sheath is left in place. Biopsy forceps are passed through this sheath to take the samples. In fact this makes the whole process of doing the transbronchial biopsy easier because there is no need to re-localise the lesion each time. Secondly when the probe enters a lesion an ultrasound image is displayed in real time. During the procedure the image is primarily used to confirm that lesion localisation has occurred and interpretation of the image is simply that of showing that there is a circumferential ultrasound shadow corresponding to a lesion as opposed to uninvolved lung surrounding the miniprobe. This is obviously the key to the success of a procedure. The added benefit of this image is that studies have shown that using simple ultrasound criteria a classification of the image into 1 of 3 classes has a strong predictive value for the nature of the underlying pathology in the lesion, specifically whether it is malignant or benign. Therefore learning to interpret these stored images after the procedure can assist in supporting pathology once it is returned, particularly where there is benign tissue on the biopsy and there are clear features of benign tissue on the EBUS image.

An important aspect of the miniprobe technique with the use of the guide sheath is the very low complication rate compared to standard transbronchial lung biopsy. Bleeding and pneumothorax with the technique are <1% whereas these are seen in around 5% of standard TBLBx including reports of major bleeding.
Indications
Biopsy of peripheral lung lesions (either masses or localised segmental infiltrates) beyond the view of the bronchoscope

Requisite Prior experience
Standard Transbronchial lung biopsy x 10, with competency in this technique including familiarity with XRay fluoroscopy

100 flexible bronchoscopies with competency in all forms of biopsy

Number of cases in training 20

Requisite knowledge prior to training Interpretation of CT images - be able to draw take offs of the common positions of takeoff of the 10 segmental bronchi on the right and 9 on the left. Be able to draw the corresponding locations of each of the pulmonary segments and relevant mediastinal corresponding localising levels

Internal Audit Goals
1. Preparation of miniprobe and biopsy forceps and brush in all cases
2. Print out bronchoscopic picture of the relevant lobe labelling all segmental branches up to 5th order where possible and labelling the branch where the probe was passed to give entry to the lesion – Log book
3. Enter the lesion to obtain a circumferential image in 75% of cases
4. Take pictures of the EBUS image and attribute an EBUS score (I/II/III) before obtaining the histological report. Should have correlation between the image and the final histology in >75% - Log book
5. Sensitivity for malignancy 60-70%
6. Typical procedure time 30-40 minutes.

Safety Goals in ongoing cases: Major Bleeding < 1%, pneumothorax <1%, infection <1%. Trainees should not have more than one of any of these complications.

Ongoing numbers 20 per year

References

MEDICAL THORACOSCOPY/PLEUROSCOPY

Introduction
Thoracoscopy or pleuroscopy is a minimally invasive procedure in which the pleural space of one hemithorax is inspected, and additional diagnostic or therapeutic procedures may be performed. It is frequently performed for patients with pleural effusion to diagnose the cause and/or for therapeutic control of effusion, but may be used for other indications such as pneumothorax. This procedure allows biopsies to be taken from the parietal pleura of diaphragm and chest wall. Therapeutic control of recurrent fluid may be achieved by drainage, talc insufflation and chest tube placement. Additional more advanced indications and procedures may be performed with specific additional training. The focus of medical thoracoscopy is on pleural disorders and any procedure which might require lung manipulation should be performed by a thoracic surgeon as a “surgical VATS”.

Foudarakis has recently commented: “Thoracoscopy is currently the gold standard for the diagnosis and treatment of pleural diseases. Its diagnostic yield is 95% in patients with malignant pleural disease, with approximately 90% successful pleurodesis for malignant pleural effusion and 95% for pneumothorax. At the same time, thoracoscopy constitutes an important tool in the research of pleural pathophysiology and molecular biology. The improvement of technology has provided important tools to thoracoscopy, such as autofluorescence, narrow band imaging, and infrared light, used in clinical and basic research in many disorders involving the pleura. For these reasons, training in thoracoscopy should be considered equally important as training in bronchoscopy for residents in respiratory medicine.”

Indications

1. Investigation of undiagnosed pleural effusion.
2. Therapeutic drainage and pleurodesis in malignant pleural effusion.
3. Pleurodesis for secondary pneumothorax in those unfit for surgery.
4. Empyema: lysis of loculi and lavage of pleural space.

Required previous experience before commencing thoracoscopy training.

Trainees must be competent in chest drain insertion before performing a thoracoscopy. Completion of the on-line chest tube insertion module as sponsored by TSANZ is recommended: “Insertion of chest tubes and management of chest drains in adults”.

Recommended training.

Potential minimum number of supervised procedures is 20.

12 months spent in a relatively high volume centre in Australia, with the opportunity to perform 20 or more supervised thoracoscopies, in combination with attendance at a thoracoscopy course would be considered a minimum period of training required to independently perform this procedure. Attendance at a high volume centre in Europe, Asia or North America, with observation or assisting for at least 10 thoracoscopies, would be considered sufficient to substantially reduce the need for attendance at a course and would also reduce the number of supervised procedures needed in Australia. Experience with both rigid and fibreoptic thoracoscopy is recommended (depending on local expertise), including single and double port entry.

The 2010 British Thoracic Society guideline on Local anaesthetic thoracoscopy has itemized basic skills which would be regarded as goals of initial thoracoscopy training which are “likely to be the level of competence at which the majority of district general physicians practice”: “A medical thoracoscopist practising at this level of competence should be able to:

1. manage patients who have large pleural effusions; however, in some instances, and as experience increases, a level I thoracoscopist may undertake the procedure in patients with smaller effusions;

2. biopsy the parietal but not the visceral pleura;
3. undertake therapeutic talc insufflation.”

Ongoing Procedure numbers: 10 per year, although this might be fewer in those centres where there was a high throughput of other pleural procedures such as Indwelling pleural catheters.

Requisite knowledge prior to training

(1) Pleural Anatomy.
 - Visceral, parietal and pleural space anatomy.
 - Parietal Pleural layers
 - Suspensory ligaments
 - Pleural sinuses
 - Related structures i.e. mediastinum and diaphragm.
 - Blood supply, lymphatic drainage and nerve supply.

(2) Pleural Physiology
 - Functions of the pleura.
 - Pleural fluid turnover.
 - Composition of pleural fluid in health and disease.

(3) Pleural Pathology
 - Infection
 - Fibrotic and inflammatory disease
 - Malignant disease, primary and secondary.
 - Pathogenesis of pleural effusions.

Audit tools

A detailed log book should be kept by the trainee, to include data such as:
 - photographs of procedures
 - >80% sensitivity for malignancy
 - success rate of therapeutic measures such as pleurodesis: >70% success rate of pleurodesis at 1 month post thoracoscopy

Four of the procedures performed by the trainee should have a formal Directly Observed Assessment of Practical Skills evaluation by supervisor, with DOPS form completed

Recommended Reading

RIGID BRONCHOSCOPY
Introduction
First performed by Gustav Killian in 1897, rigid bronchoscopy was initially used primarily for foreign body removal but was soon extended to diagnostic indications. The instrument consists of a straight hollow metal tube, which for adult use is approximately 40 cm long and between 7 and 13.5 mm in diameter. The distal end is bevelled, allowing easier passage through the vocal cords and through stenotic areas, as well as providing a chisel action to allow resection of tumour from the airway wall. The distal portion of the bronchoscope has side holes to allow ventilation. A tracheoscope is similar but shorter and has no side-holes.

The intrinsic advantages of the rigid bronchoscope over the flexible bronchoscope lie in its inherent rigidity, in its ability to serve as an instrument for ventilation, and in the size of its operative lumen which allows the passage of instruments such as large forceps, large channel aspirators, telescopes, stents, and laser fibres or coagulation devices. The combination of visualization, therapeutic manipulation of the airway and simultaneous ventilation is of particular value in situations where there is airway obstruction, as well as in paediatric patients.

Main indications include:
1) Control and management of massive haemoptysis
2) Removal of foreign bodies from the tracheo-bronchial tree
3) Treatment of airway stenosis by dilatation
4) Removal of neoplastic obstruction
5) Placement of tracheal or bronchial stents
6) Laser bronchoscopy

Required training experience
- Competency in flexible bronchoscopy
- Thorough knowledge of laryngeal and tracheo-bronchial anatomy
- Knowledge of potential complications of bronchoscopy
- Practice in insertion of a rigid bronchoscope in a mannequin model, using direct vision, video-telescope and laryngoscope approaches
- Observation of the procedure in patients on several occasions
- Supervised successful insertion in at least 10 cases
- Ability to manipulate instruments such as telescopes, forceps etc

Audit goals
- Ability to pass instrument into the trachea on first attempt in > 90% of cases without significant hypoxic periods
- Injury to teeth, gums or larynx on < 2% cases

Reference

LASER BRONCHOSCOPY
Introduction
Laser technology was first applied in the treatment of airway conditions in the 1970s when advances in fibre optic technology allowed laser beams to be passed through flexible fibres and thus combined with endoscopic procedures. Its use in the tracheo-bronchial tree was first reported by Toty in 1979.

The term laser is an acronym for Light Amplification of Stimulated Emission of Radiation, and is characterised by electromagnetic energy that is collated and delivered as parallel, synchronous rays of light of the same wavelength. The most commonly used lasers used for bronchoscopic purposes have been the carbon dioxide (CO2) laser with a wavelength of 10600nm, the Neodymium:Yttrium-Aluminium-Garnet (Nd:YAG) laser with a wavelength of 1064 nm, and the potassium-titanyl-phosphate (KTP) laser with a wavelength of 532 nm. The CO2 laser has a high absorption with a tissue penetration of 0.5-1.0 mm, good cutting but poor coagulation properties, and cannot be directed down flexible fibres but must be directed using articulated mirrors. It is thus used in the ENT context, not within the tracheo-bronchial tree. The Nd:YAG laser is the one most commonly used in pulmonary medicine and is the focus of this discussion. It can be delivered via a flexible fibre that can be passed down a rigid or flexible bronchoscope. It has a power output of between 5 and 100 W so that photocoagulation is the predominant effect at low settings and vaporization at high settings, with a tissue penetration of 5-10 mm.

Although laser therapy can be delivered exclusively with fibre-optic bronchoscopy, most operators favour use in conjunction with rigid bronchoscopy under general anaesthesia as this allows better control of haemorrhage and hypoxaemia, and also facilitates removal of tumour and debris using the chisel action of the rigid bronchoscope as well as large forceps and suction tubes.

Main indications:
- Malignant intraluminal obstruction of the proximal tracheo-bronchial tree with the purpose of re-establishing ventilation, eliminating secretions accumulated behind obstructions, and relieving symptoms such as haemoptysis, dyspnoea, and cough.
- Benign obstruction due to fibromas, hamartomas, papillomas, inflammatory granulomas, tracheo-bronchial stenoses etc.

Requisite pre procedure training experience:
- Competency in rigid bronchoscopy
- Thorough knowledge of tracheo-bronchial anatomy and adjacent structures
- Completion of a laser safety course
- Completion of an applied laser course using inanimate or animal models
- Supervised application of laser therapy in at least 5 cases
- Completion of a further 5 mentored cases

Audit goals
- Relief of symptoms in > 85% cases
- Complication rate (haemorrhage, hypoxaemia, perforation, cardiac events) < 5%

References

TRACHEOBRONCHIAL STENTS
Indications
The ATS guidelines list these indications for large airway stenting:

1. extrinsic stenosis of central airways with or without intra-luminal components due to malignant or benign disorders
2. complex, inoperable tracheobronchial strictures
3. tracheobronchial malacia;
4. palliation of recurrent intraluminal tumour growth;
5. central airway fistulae (oesophagus, mediastinum, pleura)

Background/introduction
Endobronchial stents are one of a range of techniques used primarily to palliate dyspnoea in patients who have major airway obstruction. A fundamental part of training is learning to know those cases which are symptomatic enough to actually need any intervention at all, the urgency with which it may or may not be required, and simple alternative non-interventional techniques to improve a patient’s quality of life, particularly where life expectancy is short. Having considered these things stents remain an important part of a bronchoscopist’s armamentarium.

In practical terms, the most important point is being able to confidently distinguish between large airway obstruction due to extrinsic compression (where stents may be required) to intraluminal or mural obstruction (where other methods are required). The ability to make this distinction comes during flexible bronchoscopy training - continually ask yourself and your mentor this question: “Is that tumour causing extrinsic or intrinsic obstruction?” Very often tumours cause both. The skill is knowing first of all whether anything mechanical needs to be done at all, and secondly which combination of treatments are required, and whether this combination includes a stent.

Secondly, a knowledge of the wide variety of available stents is required, and that whereas in malignant conditions either silicone or metallic stents can be used, in benign conditions non-metallic stents are generally preferred. Utility of covered and uncovered metallic stents needs to be understood.

Requisite Prior skills
Expertise with flexible and rigid bronchoscopy. Rigid experience is not essential in insertion of all stent types (such as those inserted over a guidewire) however occasionally even with these stents rigid bronchoscopy may be needed. Other stents such as the Dumon stent require rigid bronchoscopy for insertion. Sometimes these stents are inserted after a rigid bronchoscopy procedure to debulk an obstructing endobronchial lesion.

Practice
See practice for rigid bronchoscopy. Also, all techniques should be practiced on inanimate models. At least one training course should be attended where hands on practice is done. During training, 10 supervised procedures should be done or assisted, and in practice at least 5 procedures should be done per year. Where this is only just met a regular session of training with inanimate models could be incorporated into the bronchoscopy schedule for example a 1 hour session 2-3 times a year.

Safety goals
Complications should happen in <20% of cases. They include stent displacement, cough, mucus impaction, granulation tissue at stent ends, infection, perforation of airway walls.

Internal audit goals:
1. A significant improvement in a score of breathlessness as measured by an appropriate instrument should be demonstrated in at least 80% of cases (see Ref 3 below).
2. Keep a picture of pre and post procedure endobronchial appearance and CXR in all cases.
3. Typical procedure time (not including laser or other ablative intervention) for stent of <20-30 minutes.
4. For fistulae there should be reduction in fistula sequelae in 80% of cases.

References

ENDOBRONCHIAL ELECTROSURGERY: ARGON PLASMA COAGULATION & DIATHERMY

Introduction
Endobronchial electrosurgery refers to the application of heat produced by electrical current via the bronchoscope to treat abnormal tissue using a probe or a snare. The two types of electrocautery are the contact form (diathermy) and the non contact form utilising Argon gas - Argon plasma coagulation (APC). APC is a monopolar high frequency form of energy used therapeutically for the management of bleeding and the devitalisation of tissue abnormalities.

It is a “contact free” form of energy in which thermal haemostasis or ablation of pathological tissue is achieved through the use of ionised Argon gas. The current can be applied axially, laterally or radially depending on the indication. APC has been used for more than 15 years in open surgery, laparoscopy and gastrointestinal endoscopy especially for haemostasis of large surface bleeding. The equipment required for successful Argon plasma coagulation includes the APC unit, an electrosurgical generator and specific APC instruments including applicators which vary in diameter from 1.5 mm to 2.3 mm respectively. Pre procedure assessment of any patient referred for Argon plasma coagulation is as per fiberoptic bronchoscopy including checks for implanted cardiac defibrillators, pacemakers or other electrical stimulators which are also contraindications to endobronchial electrocautery.

Argon gas has a number of useful properties for endobronchial work including it being inert, highly conductive as it can be ionised and a self limiting mode of function (the plasma beam tends to turn away from tissues already coagulated or of high impedance). APC has a number of advantages over conventional laser therapy including it being a non contact procedure, providing effective coagulation and devitalisation, having limited penetration depth and therefore reduced risk of airway perforation and vascular compromise, minimal carbonisation and smoke plume lowering the risk of endobronchial ignition and fewer unpleasant odours. Also, finally it is compatible with modern day metal stents.

An alternative application to APC is endobronchial diathermy or electrocautery. Diathermy is defined as the interventional use of high frequency electrical current under bronchoscopic guidance with delivery of thermal energy via direct contact with the relevant tissue.

General principles of electrosurgery
1. Procedures may be performed in the bronchoscopy suite under flexible or rigid bronchoscopy.

2. Synthetic materials within the airway are potential fuels or combustible material and therefore promote the risk of endobronchial ignition or fire. It is preferable for procedures to be performed via laryngeal mask especially for procedures involving the large or proximal airways (NB: metal stents such as Ultraflex stent made from nickel titanium are not combustible).

3. The smoke plume generated from the APC or diathermy probe may interact with oxygen to form an inflammatory gas mixture. The risk of combustion or fire is minimised by constantly evacuating the smoke plume using intermittent suction on the bronchoscope.

4. Activation of the APC or diathermy probe should be for the shortest period of time required to achieve the desired clinical effect and reduce the formation of the smoke plume.

5. Oxygen concentrations during application should be less than 40% (FiO\textsubscript{2} < 0.4) or the lowest possible percentage to obtain oxygen saturations equivalent to or above 90% via pulse oximetry.

6. No potential flammable inhalational agents are to be used after discussion with the attending anaesthetist. APC or diathermy should be applied in the tracheobronchial system during the apnoea phase of respiration.

7. No alcohol scrubs or other inflammatory preparatory liquids are to be used for procedures with no gel placed on the tip of the bronchoscope.

8. During activation of the Argon plasma beam the distal end of the applicator (minimum of one black band) must always be visible through the bronchoscope to minimise damage to the fiberoptic system.

9. APC procedures utilise non contact technology with activation of the beam recommended approximately 5 mm from the tissue surface. This gives a projected penetration depth typically of 3 mm which reduces the risk of airway perforation.

For Argon, the ERBE system consists of three modes of delivery:-
- Precise mode (a narrow Argon beam to facilitate more precise application) – may be useful in laryngeal work.
- Pulsed APC (enables controlled activation of the Argon beam with a particularly large ignition interval).
- Forced APC (continual application of the Argon beam).

For all APC modes, activation time should be limited to a maximum of 5 seconds but usually 1-2 seconds. Typical recommended settings for Argon plasma procedures are an Argon flow rate of 0.4-1.5 litres/minute (for the 1.5 mm diameter probe) or 0.6-1.5 litres/minute (for the 2.3 mm diameter probe). Wattage to commence at 30-40 watts. Place diathermy pad on the patient on the side to be treated (eg right thigh for right main bronchus treatment) and as close as possible to the treatment area.

Indications
1. Control of superficial and small vascular haemorrhages from bronchial papillomas or malignant growths.

2. Tumour reduction especially in patients who present with large airway or proximal obstruction (normally in conjunction with other techniques including balloon dilatation and rigid bronchoscopy).

3. Tumour bleeding.

4. Re-cannulisation of an obstructed airway or bronchus from multiple potential aetiologies.

5. Reduction and removal of granulation tissue. Especially in conjunction with a stent.

6. Fistula conditioning.

Prior experience and number of cases:-
- 100 flexible bronchoscopies with demonstrated competence and with appropriate supervision.
- 20 APC procedures, 20 electrocautery cases.

Prerequisite knowledge prior to training:-
To ensure that patients with obstructing airway tumours meet the following criteria for APC or diathermy procedures:-

- Symptoms primarily related to airway obstruction and not to systemic disease.

- Tumour located within the lumen of the airway ie intraluminal malignancy.

- The margins between the tumour and normal airway are clearly identifiable.

- Avoid tissue contact with the non contact technique and probe adhesion to friable tissues which reduces the risk of bleeding.

- Tumour length generally less than or equal to 3.5 cm.

- There is functional lung distal to the obstruction or a leaf of post obstructed pneumonia is feasible.

- Obstructions to airways from lesions causing extrinsic compression are best palliated by external beam radiotherapy or balloon dilatation followed by stent insertion rather than APC.

- To have a thorough knowledge of how to approach a patient who experiences endobronchial combustion during an electrosurgical procedure.

- Awareness of the specific safety requirements for APC delivery to reduce the risk in particular of endobronchial ignition.

- Thorough knowledge of tracheobronchial anatomy and adjacent vascular structures.

- Ability to adjust APC settings in order to optimise the delivery of thermal energy to facilitate tissue devitalisation.
- Familiarity with the equipment required for APC delivery including the ERBE machine.
- Connection of cables and diathermy plate.
- Ensure Argon probe tightly connected and primed.
- Ensure correct settings, positioning of the foot pedal and gas cylinders are full with the Argon gas.

Internal audit goals

For cases where electrocautery is used to recanalise large airways procedure outcome goals are as for laser bronchoscopy

A detailed log book should be kept by the trainee to ensure that there is a record of safety and potential complications. Complications should happen in less than 5% of cases and may include haemorrhage (<2%), pneumothorax (<1%), infection (<1%), air embolism (<0.1%), bronchomalacia after thermal injury to the bronchial cartilage (<1%), scope damage, ulceration with potential for delayed haemorrhage, endobronchial ignition (this risk is well <1% following appropriate guidelines) and the injury to adjacent normal structures.

Typical procedure time – 30-45 minutes depending on the complexity of the case.

References

AUTOFLUORESCENCE BRONCHOSCOPY

Introduction

Autofluorescence bronchoscopy is used to detect precancerous lesions in the central airways of the respiratory tract. The first systems came into use in 1993. A blue light of wavelength 400-450 nm is used as the incident light; this causes normal tissues to fluoresce green. Abnormal preneoplastic tissues have a reduced fluorescence. Fluorescence signals can be detected using cameras which reduce the reflected blue light and amplify the fluorescence. These signals can be displayed in real time allowing the bronchoscopist to biopsy those areas with reduced fluorescence. Alternating with white light allows the bronchoscopist to check for common abnormalities such as mucus, inflammation or airway bleeding which might cause false positive fluorescence changes. Therefore it does require the proceduralist to be very familiar with standard white light appearances. Typically fluorescence bronchoscopy adds 5-10 minutes to a standard white light procedure.

Only 29% of thin subtle carcinomas in situ are visible to experienced bronchoscopists[1]. In numerous studies with direct comparisons between white light and fluorescence, there is usually a 2-3 fold improvement in detection rates. In a multicentre study[2] of patients at risk or with known lung cancer the combination of fluorescence bronchoscopy and white light had a relative sensitivity (sensitivity of the test divided by the sensitivity of the comparative test) of 6.3 compared to white...
light alone. When invasive cancers were included the relative sensitivity was still 2.7. Similar findings have been shown in other studies[3-6]. Collected data from over 1400 patients suggests White light bronchoscopy alone detects 40% of high grade dysplasia and CIS while fluorescence bronchoscopy improves this to 88%.

Important in the development of this technique is standardisation of reporting of histology of preneoplastic lesions.

Indications

1. Particular use for this has come in bronchoscopy to investigate abnormal sputum cytology[7]. In a series of 50 cases, prior to the development of fluorescence bronchoscopy the yield for the cause of the abnormal tissue was significantly lower than when fluorescence bronchoscopy was introduced. Furthermore only one fluorescence bronchoscopy was required to find the culprit lesion, whereas patients usually required at least 2 and sometimes 3-4 standard white light bronchoscopies to find the lesion.

2. The detection of one high grade preneoplastic lesion by standard bronchoscopy suggests the need for fluorescence bronchoscopy because of the field change hypothesis. Multicentric disease is present in up to 40% of cases, and the other sites not visible to standard bronchoscopy may be of higher grade than the initial biopsy[2-7].

3. When small endobronchial carcinomas in situ are being considered for treatment (surgery vs radiotherapy vs endobronchial ablation) fluorescence bronchoscopy defines the true margins of the lesion more accurately than white light and allows better decision making[8].

Prior experience
The procedure requires only the same technical skills as a standard bronchoscopy, however it needs experience to understand the many common variations of normal of white light bronchoscopy. Skill at endobronchial biopsies with at least 20 biopsies of endobronchial carcinoma.

Number of cases in training 20

Requisite knowledge prior to training
Detailed understanding of anatomical variations. Ability to draw freehand 3 common variations of each of the 6 lobar divisions.

Internal Audit Goals

1. Overall yield of moderate dysplasia or worse of >10%.

2. Degree of fluorescence abnormality can be graded 1,2 or 3 as described by Lam, with being most likely to indicate high grade dysplasia. This grading can be recorded at the time of the procedure prior to results of histology being reported.

3. Positive predictive value of moderate dysplasia or worse for a Grade 3 fluorescence lesion of >30%.

4. In patients coming for repeat surveillance who have prior documented fluorescence lesions be able to identify to the supervisor >90% of lesions previously seen (document with video)

5. Typical procedure time 15-20 minutes.
Safety Goals As for white light bronchoscopy.

Ongoing numbers 20

References

Hirsch FR et al. Fluorescence vs white light bronchoscopy. JNCI 2001;93:1385

Ernst J Bronchol 2005

Sato M et al. Diagnostic results before and after introduction of autofluorescence bronchoscopy. Lung Cancer 2001;32:247